

Scientific

Collaboration

LIGO

GW150914 ("The Event"): Results and Implications

Matched Filter for the Detection

We model the expected gravitational waves coming from black holes (BHs). These waves depend on BH masses and other parameters. So parameter space is discretely sampled to form template bank. Then we search through the very noisy data to see if we have that signal. This is like we are in the very noisy, crowded place. But when someone calls our name out, our brain picks it over the background noise. Our name works as a modelled signal for our brain. Thats is how we can extract particular GW signal even from very the noisy LIGO data.

GW150914:FACTSHEET

BACKGROUND IMAGES: TIME-FREQUENCY TRACE (TOP) AND TIME-SERIES IN THE TWO LIGO DETECTORS; SIMULATION OF BLACK HOLE HORIZONS (MIDDLE-TOP), BEST FIT WAVEFORM (MIDDLE-BOTTOM)

first direct detection of gravitational waves (GW) and first direct observation of a black hole binary

observed by	LIGO L1, H1	duration from 30 Hz	~ 200 m
source type	black hole (BH) binary	# cycles from 30 Hz	~10
date	14 Sept 2015	peak GW strain	1 x 10 ⁻²
time	09:50:45 UTC	peak displacement of	+0 002 f
likely distance	0.75 to 1.9 Gly 190 to 590 Mpc	interferometers arms frequency/wavelength	±0.002 T
redshift	0.054 to 0.136	at peak GW strain	~ 0.6 c
signal-to-noise ratio	o 24	peak GW luminosity	3.6 x 10 ⁵⁶ e
false alarm prob.	< 1 in 5 million	radiated GW energy	2.5-3.5 N
false alarm rate	< 1 in 200,000 yr	remnant ringdown freq.	~ 250 Hz
Source Ma	isses Mo	remnant damping time	~ 4 ms
total mass	60 to 70	remnant size area	180 km. 3.5 x ⁻
primary BH	32 to 41	consistent with	passes all t
secondary BH	25 to 33	general relativity?	performe
remnant BH	58 to 67	graviton mass bound	< 1.2 x 10 ⁻²
mass ratio	0.6 to 1	coalescence rate of	
primary BH spin	< 0.7	binary black holes	2 to 400 Gp
secondary BH spin	< 0.9	online trigger latency	~ 3 min
remnant BH spin	0.57 to 0.72	# offline analysis nineline	~ 5 mm
signal arrival time	arrived in L1 7 ms		
delay	before H1	CPU hours consumed F	50 million (= Cs run for 10
likely sky position	Southern Hemisphere	napers on Eeb 11, 2016	13
likely orientation resolved to	face-on/off ~600 sq. deg.	# researchers ~	1000, 80 inst in 15 count

	observed by	LIGO L1, H1	duration from 30 Hz	~ 200 ms
	source type	black hole (BH) binary	# cycles from 30 Hz	~10
	date	14 Sept 2015	peak GW strain	1 x 10 ⁻²¹
_	time	09:50:45 UTC	peak displacement of	+0.002 fm
	likely distance	0.75 to 1.9 Gly 190 to 590 Mpc	interferometers arms frequency/wavelength	150 Hz 2000 km
	redshift	0.054 to 0.136	at peak GW strain peak speed of BHs	~ 0.6 c
	signal-to-noise ratio	24	peak GW luminosity	3.6 x 10 ⁵⁶ erg s ⁻¹
	false alarm prob.	< 1 in 5 million	radiated GW energy	2.5-3.5 M⊙
	false alarm rate	< 1 in 200,000 yr	remnant ringdown free	q. ~ 250 Hz
_	Source Ma	sses Mo	remnant damping tim	ne ~ 4 ms
	total mass	60 to 70	remnant size, area	180 km, 3.5 x 10 ⁵ km
	primary BH	32 to 41	consistent with	passes all tests
	secondary BH	25 to 33	general relativity?	performed
_	remnant BH	58 to 67	graviton mass bound	< 1.2 x 10 ⁻²² eV
	mass ratio	0.6 to 1	coalescence rate of	2 to 400 Gpc ⁻³ vr ⁻¹
		< 0.7	binary black holes	
	secondary br spin	< 0.9	online trigger latency	~ 3 min
	remnant BH spin	0.57 to 0.72	# offline analysis pipeling	nes 5
	signal arrival time	arrived in L1 7 ms		~ 50 million (=20.00
	delay	before H1	CPU hours consumed	PCs run for 100 days
	likely sky position	Southern Hemisphere	papers on Feb 11, 2016	13
	likely orientation resolved to	face-on/off ~600 sq. deg.	# researchers	~1000, 80 institutior in 15 countries

Significance of the Detection

Histogram plot of all the triggers: Real and time slides (noise only). Black-gray histograms are all coincident triggers including time slides. Indigo-voilet histograms are coincident triggers after excluding "the Event: GW150914". Real detection is much more than 5.1 sigma, but we lack the enough data to get there numerically.

		В	inar	y coa	les	cer	nce	sea	rcl	n	
σ	3σ	4σ	5.1	σ							> 5
	-									-	

	20 30 40	5.1 <i>σ</i>		$> 5.1\sigma$
	2σ 3σ		4σ5.1σ	> 5.1 <i>0</i>
.02		Search Result		

Detector noise introduces errors in measurement. Parameter ranges correspond to 90% credible bounds. Acronyms: L1=LIGO Livingston, H1=LIGO Hanford; Gly=giga lightyear=9.46 x 10¹² km; Mpc=mega parsec=3.2 million lightyear, Gpc= 10^3 Mpc, fm=femtometer= 10^{-15} m, M \odot =1 solar mass=2 x 10^{30} kg

Schematic of LIGO Detector with there locations with correct orientation and PSDs of both H1 and L1 during "the Event"

"The Event" as recorded by H1 and L1 LIGO Detectors with the modelled signal and residual noise. Lower panel is time-frequency diagram of "the chirp Event".

