

Gravitational Waves

time varying quadrupole moment), much as electromagn are created by moving charges. But because gravity is the weakest of the four fundamental forces (the others being the electromagnetic, weak nuclear, and strong nuclear), gravitational waves are exceedingly small. For physicists, a strong gravitational wave will produce displacements on the order of 10⁻¹⁸ meters - this is 1000 times smaller than the diameter of a proton. Waves of this strength will be produced by year massive systems undergrains strength will be produced by very massive systems undergoing large accelerations, like two orbiting black holes that are about to merge into one. Although Einstein's General Theory of Relativity is adequate to

explain gravitational waves, the equations are too complicated to be solved analytically. Today these equations are solved using supercomputers to predict the nature of gravitational waves yet to be observed.

Possible Sources of Gravitational Waves

propagation of the wave. If we have some free particles arranged in circle then if gravitational waves pass through the plane of the circle they move in the following manner. The two sets show the effects of two polarizations + and × separately. T is the Continuous Inspiral Burst Stochastic predict event gravitational produced by have a fairly Inspiral gravitational waves are generated during the end-of-life stage of binary systems where Continuous Scientists Stochastic gravitational waves are time period of the wave. that the relic gravitational waves from the early evolution of the universe. Much like the Cosmic Micro-wave such explosive waves are systems that as explosive events such as supernovae and gamma ray constant and well-defined frequency. Examples of these are binary stars or black holes orbiting each other from far These systems are usually two neutron stars, two black holes, or a neutron star and a black hole bursts may produce bursts of gravitational waves. The of gravitational waves. The exact form these waves will take, is still unknown to Background (CMB), which is likely to be the leftover light from the Big Bang, these gravitational waves arise from a large number of random, independent events apart or a single star swiftly whose orbits have degraded to burst gravitational waves the rotating about its axis with a large mountain or other irregularity on it. These are the point that the two masses are about to coalesce. The sound these gravitational waves would unexpected is expected. The 'sounds' are expected to be 'pops' and 'crackles'. a cosmic combining to create T/2 3T/4 0 T/4 т gravitational wave background. ak sources produce is a chirp sound Though gravitational waves pass straight through matter, their strength weakens proportionally to the distance traveled from the source. This alternate stretching and shrinking, happens on an incredibly small scale - by a factor of 10^{-21} for very strong sources. That's roughly equivalent to measuring a change the size of an atom in the distance from the Sun to Earth! **Detecting Gravitational Waves** Indirect Detection **Gravitational Wave Spectrum** In 1974, Princeton University astronomers Russell A. Hulse and Joseph H. Taylor located PSR 1913+16. This object is a pulsar. It orbits another star, which is likely astrophysical electromagnetic Galler Cal stellar-mass black holes inspiraling into supermassive incoherent and have wavelengths typically much smaller than their sources, ranging from a few kilometers down 100 C another neutron star. Four years after first discovering PSR 1913+16 and after some careful timing measurements of the pulsar, Hulse and Taylor found that the two stars were moving closer to each other. That to sub-nuclear wavelengths, gravitational waves are coherent and have wavelengths larger than their sources, with wavelengths starting at a few kilometers and ranging up to the size of the Universe. Depending X 8 White-dwarf Coalescing binaries of a intermediate mass black on the wavelength of the vace we can propose different methods like CMB polarization, Pulsar timing study, Laser Interferometers etc. for their detection. could only happen if something was pulling energy out of the system. After 18 years of careful measurement, Taylor has now Anter to years of careful measurement, rayon has now precisely timed PSR 1913-16's orbital periods and found they are within 0.3 percent of general relativity's predictions of energy radiated by gravitational wave. The Nobel Prize in Physics 1993 was awarded to Hulse and Taylor 'for the discovery of a new type of pulsar, a discovery that has opened up new possibilities for the study of Laser Interferometer The current state-of-the-art gravitational wave detectors are L-shaped and gravitation" measure the relative lengths of the arms using interferometry Weber Bar In 1960s physicist Joseph Weber at the University of Maryland tried to detect gravitational waves by using a device now known as Weber bar which consisted of multiple aluminum cylinders, 2 meters in length and 1 meter in diameter. These massive aluminum cylinders were designed to be set in motion by gravitational waves of it's resonance frequency. Because these waves were supposed to be so weak, the cylinders had to be massive and the sensors had to be very

nsitive, capable of detecting a change in the cylinders' lengths Unfortunately, despite Weber's claims Weber bar was not sensitive enough to detect any gravitational waves

by about 10⁻¹⁶ meters

measure the relative lengths of the arms using interferometry. A single laser beam is split at the intersection of the two arms. Half of the laser light is transmitted into one arm while the other half is reflected into the second arm. Mirrors are at the end of each arm. Laser light in each arm bounces back, and returns to the intersection, where it interferes with each other. If the lengths of both arms have remained unchanged, then the two combining light waves should completely subtract each other and there will be no light observed at the output of the detector. However, if a gravitational wave were to slightly (about 1/1000 the diameter of a proton for 4 km arms) stretch one arm and compress the other, the two light beams would no longer subtract each other and produce some light output. This output will tells us about the gravitational waves. When the When the be used to find beams are beams are in phase. out of phase. the phase and output is maximum the change of length. output is minimum

Today, we are on the edge of a new frontier in astronomy: gravitational wave astronomy. Since the universe is more transparent to gravity, this study will explore an unknown aspect of the universe and can be named our attempt to build the first gravitational wave telescope.

Effects of Gravitational Waves

Gravitational waves interact with matter by compressing objects in one direction while stretching them in the perpendicular direction. The plane in which the compressing and stretching happens is perpendicular to the