
EMBARGOED UNTIL 17:30 hrs IST ON Tuesday, 29 June 2021

लाइगो (LIGO) ने प्रथम मिश्रित तारकीय टक्कर को ढूंढ़ा

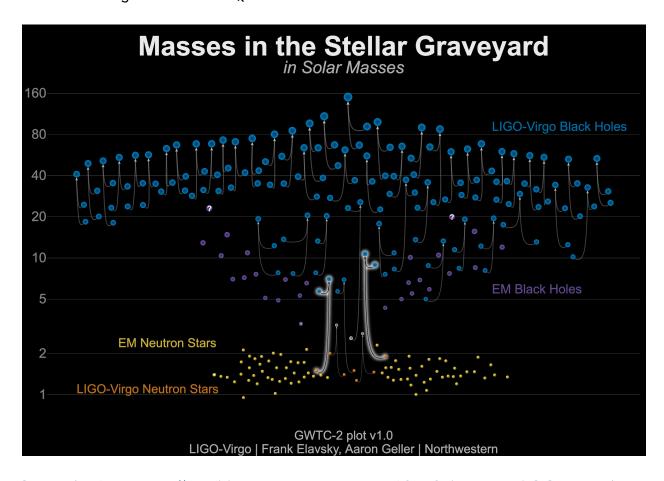
लाइंगो द्वारा गुरुत्वीय तरंगों के एक नए श्रोत की शानदार खोज: न्यूट्रॉन तारों और ब्लैक होल्स की टक्कर

आइंस्टीन के सापेक्षता का सामान्य सिद्धांत गुरुत्वाकर्षण को दिक् काल (spacetime) की बनावट में विशाल ब्रहमाण्डीय पिण्डों जैसे <u>ब्लैक होल्स</u> (BH) और <u>न्यूट्रॉन तारे</u> (NS) की उपस्थिति से उत्पन्न विकृति के रूप में वर्णित करता है। जब ये पिण्ड टकराते हैं या विक्षोभित (perturbed) होते हैं, गुरुत्वीय तरंगें दिक् काल की बनावट में लहरों के रूप में यात्रा करती हैं। अब तक गुरुत्वीय तरंग(GW) संसूचकों (detectors) के लाइगो-विरगो (Virgo) सहयोग (LVC) केवल ब्लैक होल्स के युग्मों या न्यूट्रॉन तारों के युग्मों की टक्कर का ही प्रेक्षण कर सके हैं। जनवरी 2020 में पहली बार लाइगो-विरगो नेटवर्क संसूचकों ने एक न्यूट्रॉन तारे और ब्लैक होल के युग्म के विलय "NSBH विलय" से उत्पन्न गुरुत्वीय तरंगों की अभूतपूर्व खोज की।

चित्र 1: एक ब्लैक होल का एक न्यूट्रॉन तारे के साथ हो रहे विलय का कलात्मक चित्रण (चित्र: लाइगो-इंडिया/ सोहेब मंढाई)

ब्लैक होल्स का गुरुत्वाकर्षण इतना प्रबल होता है कि प्रकाश भी इनसे पलायन नहीं कर पाता। यदि हमारा सूर्य 3 किमी के आकर में सिकुड़ जाये, तब यह एक ब्लैक होल बन जायेगा। न्यूट्रॉन तारे भी बहुत सघन होते हैं किन्तु ब्लैक होल्स से कम। यदि हम सूर्य को सिकोड़ कर एक शहर के आकर (लगभग 15 किमी) कर दें तब इसका घनत्व न्यूट्रॉन तारे के घनत्व के समान होगा।

ब्लैक होल्स न्यूट्रॉन तारो से अधिक द्रव्यमान वाले और सघन होने के कारण नजदीक चक्कर लगा रहे न्यूट्रॉन तारे को तोड़ सकते हैं और अपने चारो ओर चक्कर काटती एक एक्रीशन डिस्क का निर्माण कर देते हैं, जैसा चित्र 1 में दिखाया गया है। अनेक प्रेक्षणों एवं सैद्धांतिक मॉडलों से पता चलता है कि एक्रीशन डिस्क से कणों और प्रकाश (विद्युतचुम्बकीय विकिरण) का उत्सर्जन हो सकता है। यद्यपि ऐसे NSBH निकाय के लिए एक्रीशन डिस्क के निर्माण की संभावना बहुत कम होती है, घटना के संसूचन के तुरंत बाद कई दूरबीनों ने प्रकाश (घटना से जुड़ा विद्युतचुम्बकीय प्रतिरूप) के उत्सर्जन को ढूँढ़ा। लेकिन ऐसा कोई प्रकाश नहीं मिला। यदि वहाँ एक्रीशन डिस्क हो तब भी इतनी विशाल ब्रह्माण्डीय दूरियों से विद्युतचुम्बकीय प्रतिरूपों का संसूचन करना अत्यंत चुनौतीपूर्ण होता है।


चित्र 2: ब्लैक होल तथा न्यूट्रॉन तारे के विलय की घटना से प्रेरित कलात्मक चित्र (साभार: कार्ल नॉक्स, स्विनबर्न विश्वविद्यालय)

टकराव की पहली घटना उपनाम GW200105, 5 जनवरी, 2020 को लाइगो-लिविंग्सटन तथा विरगो वेधशाला द्वारा, जबिक दूसरी घटना उपनाम GW200115, 15 जनवरी को तीन वेधशालाओं: लाइगो-लिविंग्सटन, लाइगो-हैंडफोर्ड तथा विरगो द्वारा संसूचित की गयीं। इससे पहले 2019 में एक अन्य गुरुत्वीय तरंग घटना का लाइगो और विरगो द्वारा प्रेक्षण किया गया था जो संभवतः एक NSBH विलय थी, लेकिन टकराव वाले युग्मक (binary) पिण्डों में से छोटे वाले का द्रव्यमान न्यूट्रॉन तारे और ब्लैक होल दोनों के संभावित द्रव्यमान से मेल नहीं खाया (देखें चित्र 3)। जनवरी 2020 में संसूचित इन दो नयी गुरुत्वीय तरंग घंटनाओं के लिए वैज्ञानिक काफी

आशवस्त हैं कि दोनों युग्मकों में कम द्रव्यमान वाला पिण्ड न्यूट्रॉन तारे के द्रव्यमान की संभावित सैद्धांतिक सीमा के अंदर ही है।

संसूचन कैसे किये गए?

जब दो सघन और विशालकाय पिण्ड एक दूसरे की परिक्रमा करते हैं वे एक दूसरे के नजदीक आ जाते हैं और अंततः गुरुत्वीय तरंगों के रूप में ऊर्जा का क्षय करने के कारण विलय कर जाते हैं। LVC द्वारा वर्तमान में संसूचित तरंगों का आयाम 10^21 के एक भाग के बराबर है, यह संसूचकों के अंदर प्रकाश के पथ में जिस आकर के परिवर्तन के बराबर है वह एक परमाणु के नाभिक के आकर से भी काफी कम है! चित्र 3, 2015 से दो पिण्डों के विलय से उत्पन्न ग्रुत्वीय तरंगों के संसूचन को दर्शाता है।

चित्र 3: ब्लैक होल्स तथा न्यूट्रॉन तारों के द्रव्यमान प्रकाश द्वारा अवलोकित किये गए (EM से चिन्हित पीला/बैगनी) या गुरुत्वीय तरंगों द्वारा अवलोकित किये गए (नारंगी/नीला)। खोजी गयी NS-BH विलय की घटनाएं GW200105 तथा GW200115 विशिष्ट रूप से दर्शायी गयी हैं।

गुरुत्वीय तरंगों के संकेत पृष्ठभूमिक ध्विन में काफी गहराई में दबे होते हैं। इन संकेतों को ढूंढ़ने के लिए वैज्ञानिक एक तरीका, जिसे मैच्ड फ़िल्टरिंग कहते हैं, का प्रयोग करते हैं। मैच्ड फ़िल्टरिंग में, आइंस्टीन के सापेक्षता के सिद्धांत द्वारा पूर्वानुमान की गयी संभावित गुरुत्वीय तरंग स्वरूपों की तुलना आंकड़ों के विभिन्न खण्डों से करके एक ऐसी राशि प्राप्त करते हैं जो यह बताती है कि आंकड़ों में निहित संकेत (यदि हैं) तरंग स्वरूपों के किसी भी स्वरूप से कितना मेल खाते हैं। जब कभी यह मिलान (तकनीकी भाषा में "संकेत-शोर का अनुपात " या SNR) महत्वपूर्ण होता है (8 से अधिक), तब कहा जाता है की एक घटना का संसूचन हुआ। GW200105के लिए SNR लगभग 11 तथा GW200115 के लिए 13.5 के करीब था। एक दूसरे से हज़ारों किलोमीटर दूर स्थित अनेक संसूचकों में लगभग एक ही समय पर किसी घटना को संसूचित करना वैज्ञानिकों को और अधिक विश्वास देता है कि संकेतों की उत्पत्ति खगोलभौतिकीय है और ऐसा दोनों ही घटनाओं में है। चित्र 3, ब्लैक होल्स और न्यूट्रॉन तारों से प्राप्त 2015 के प्रथम गुरुत्वीय तरंग संसूचन से लेकर अब तक के सभी पुष्ट गुरुत्वीय तरंग संसूचनों को दर्शाता है और यह दो नए NSBH घटनाओं पर भी रोशनी डालता है।

हम कितना आश्वस्त है कि वे न्यूट्रॉन तारे - ब्लैक होल (NS-BH) विलय हैं?

आंकड़ों पर <u>प्राचल आकलन</u> तरीके का उपयोग करके वैज्ञानिक विलय से जुड़े पिण्डों के संभावित द्रव्यमान, स्पिन, उनकी दूरी और स्थिति का पता लगाते हैं। ये दोनों घटनाएं एक अरब प्रकाश वर्ष की दूरी पर घटित हुईं! क्योंकि गुरुत्वीय तरंगें प्रकाश की गति से यात्रा करती हैं इसका अर्थ यह हुआ कि हमने जो विलय देखा वह लगभग एक अरब वर्ष पहले घटित हुआ -- पृथ्वी पर जीवन की उत्पत्ति से बहुत पहले!

GW200105 में अधिक द्रव्यमान वाले पिण्ड का द्रव्यमान सूर्य के द्रव्यमान (M_सूर्य = 2 x 10^30 कि.गा.) से 8.9 गुना अधिक था, और कम द्रव्यमान वाले पिण्ड के लिए यह 1.9 M_सूर्य था। GW200115 में दोनों द्रव्यमान 5.7 M_सूर्य और 1.7 M_सूर्य थे। यद्यपि अधिक द्रव्यमान वाले पिण्ड का द्रव्यमान LVC द्वारा अब तक संसूचित द्रव्यमान जितना ज्यादा नहीं है, किन्तु यह अन्य पारम्परिक वेधशालाओं द्वारा अप्रत्यक्ष तरीकों से मापे गए ब्लैक होल्स के द्रव्यमान की सीमा में ही है, जैसा की चित्र 3 में दर्शाया गया है। इसके अलावा कम द्रव्यमान वाले पिण्ड का द्रव्यमान भी सैद्धांतिक और विद्युतचुम्बकीय तरीकों द्वारा निर्धारित न्यूट्रॉन तारों के द्रव्यमान की सीमा, लगभग 1 - 3 M_सूर्य, के अंदर ही है। ब्लैक होल्स के द्रव्यमान तारों के निर्माण और विकास के मॉडल्स के पूर्वानुमानों से मेल खाते हैं लेकिन सैद्धांतिक रूप से उनका द्रव्यमान अनोखी उत्पत्ति वाले एकदम प्रारम्भिक ब्लैक होल्स, जिनके बारे में संकल्पना यह है कि उनका निर्माण ब्रह्माण्ड के एकदम शुरूआती समय में हुआ, के द्रव्यमान से भी मेल खाता है।

हमने कौन सा नया विज्ञान सीखा?

ये अवलोकन हमें युग्मकों (binaries) के निर्माण एवं सापेक्ष रूप से उनकी बहुलता को समझने में सहायता करते हैं। न्यूट्रॉन तारे ब्रह्माण्ड के सर्वाधिक सघन पिण्ड होते हैं, अतः ये अनुसन्धान चरम घनत्व की अवस्था में पदार्थ के व्यवहार को समझने में भी सहायक हो सकते हैं। न्यूट्रॉन तारे ब्रह्माण्ड की सबसे सटीक घड़ियाँ भी हैं, यिद वे अत्यंत आवर्ती स्पंदनों (pulses) को उत्सर्जित करें। ब्लैक होल्स के चारों ओर परिक्रमा करने वाले पल्सार की खोज से वैज्ञानिकों को चरम गुरुत्वाकर्षण के प्रभावों सम्बन्धी अनुसन्धान में सहायता मिल सकती है। यिद कोई विद्युतचुम्बकीय प्रतिरूप मिले होते तो हम अपने ब्रह्माण्ड के त्वरण के बारे में भी जानकारी पा सकते हैं। NS और BH का विलय कितनी बार होता है (जिसे आमतौर पर "विलय दर" कहा जाता है) इसकी गणना वैज्ञानिकों को इन निकायों की उत्पत्ति और निर्माण सम्बन्धी संकेत देते हैं। संसूचित दोनों घटनाएं हमें 'NSBHविलय दर' की सीमाएं देती हैं; यह अनुमान लगाया गया है कि ऐसी घटनाएं पृथ्वी को केंद्र मानकर 3 अरब प्रकाश वर्ष आयतन वाले घन में प्रतिवर्ष न्यूनतम 2 और अधिकतम 250 बार घटित होती हैं।

भारतीय योगदान

लाइगो इंडिया साइंटिफिक कोलैबोरेशन (LISC) से जुड़े भारतीय शोधकर्ताओं ने इस महत्वपूर्ण खोज में योगदान दिया। विशेषरूप से इंटरनेशनल सेंटर फॉर थ्योरेटिकल साइंसेज (ICTS) बंगलुरु के डॉ शास्वथ कपाडिया ने अपने द्वारा विकसित एक तरीके से NS-BHके विलय दर के आकलन में योगदान दिया।

Glossary

- ब्लैक होल: एक अत्यधिक घनत्व वाला ऐसा पिण्ड जिसका गुर्त्वाकर्षण इतना अधिक होता है कि प्रकाश भी पलायन नहीं कर पाता।
- न्यूट्रॉन तारे: एक विशालकाय तारे की मृत्यु के बाद बचे सघन अवशेष
- विद्युतचुम्बकीय विकिरण: दृश्य प्रकाश , रेडियो तरंगें , सूक्ष्म तरंगें , एक्स-किरणें सभी विद्युतचुम्कीय तरंगों के ही उदहारण है जिनमें अंतर उनकी तरंगधैर्य के कारण होता है
- विद्युतचुम्बकीय प्रतिरूपः GW घटना से सम्बद्ध विद्युतचुम्बकीय संकेत
- प्राचल ऑकलन: एक ऐसा सांख्यकीय तरीका जिसमें ऑकड़ों के एक नमूने की सहायता से वितरण के प्राचलों की गणना की जाती है
- प्रकाश वर्ष: एक वर्ष में प्रकाश द्वारा तय की गयी दूरी (लगभग 10 खरब किमी)

पढ़ें:

https://www.ligo.org/science/Publication-NSBHDiscovery/index.php (active after public release)

मीडिया संपर्क

LSC-LISC Principal Investigator

Sukanta Bose (IUCAA, Pune)

E-mail: sukanta@iucaa.in, Tel. 020 2560 4500

LSC-LISC Co-Principal Investigator

Bala Iyer (ICTS-TIFR) E-mail: bala.iyer@icts.res.in, Tel. 9739373144

LIGO-India spokesperson

Tarun Souradeep (IISER Pune and IUCAA Pune) E-mail: tarun@iiserpune.ac.in, Tel. 9422644463

CMI - Chennai Mathematical Institute, Chennai

K.G. Arun E-mail: kgarun@cmi.ac.in, Tel. 9500066350

ICTS - International Centre for Theoretical Sciences (TIFR), Bengaluru

P. Ajith E-mail: ajith@icts.res.in, Tel. 9164594474

IISER-Kolkata - Indian Institute of Science Education and Research Kolkata

Rajesh Kumble Nayak. E-mail: rajesh@iiserkol.ac.in, Tel. 9903507977

IISER-Pune - Indian Institute of Science Education and Research Pune, Pune

Tarun Souradeep. E-mail: tarun@iiserpune.ac.in, Tel. 9422644463

IIT Bombay - Indian Institute of Technology Bombay, Mumbai

Archana Pai E-mail: archanap@iitb.ac.in, Tel. 9037573123

IIT Gandhinagar - Indian Institute of Technology Gandhinagar

Anand Sengupta E-mail: asengupta@iitgn.ac.in, Tel. 8758146696

IIT Hyderabad - Indian Institute of Technology Hyderabad

Surendra Nadh Somala E-mail: surendra@ce.iith.ac.in, Tel. 9398213383

IPR - Institute for Plasma Research, Gandhinagar

Arnab Dasgupta Email: arnabdasg@ipr.res.in; Tel: 8306098020

IUCAA - Inter-University Centre for Astronomy and Astrophysics, Pune

Sanjit Mitra E-mail: sanjit@iucaa.in, Tel. 8275067686

IIT Madras - Indian Institute of Technology Madras, Chennai

Chandra Kant Mishra E-mail: ckm@iitm.ac.in, Tel. 8748816343

RRCAT - Raja Ramanna Centre for Advanced Technologies, Indore

Dr. Yogesh Verma E-mail: yogesh@rrcat.gov.in, Tel: 0731 2442627

SINP - Saha Institute of Nuclear Physics, Kolkata

Arunava Mukherjee Email: arunava.mukherjee@saha.ac.in, Tel. 8317813612

TIFR - Tata Institute of Fundamental Research, Mumbai

A. Gopakumar E-mail: gopu@tifr.res.in, Tel. 9869039269

C. S. Unnikrishnan E-mail: unni@tifr.res.in, Tel. 9869564290

Hindi translation by Prof. Sanjay K Pandey

Prof. Pandey is an associate professor of Mathematics, at Sri L B S Degree College, India. He is also a visiting associate of the Inter-University Centre for Astronomy & Astronomy (IUCAA), India. Apart from trekking, cycling he has a keen interest in contemporary Hindi Literature.