Detector Characterization

We work on characterizing the detector’s behavior under the influence of various types of terrestrial disturbances. This understanding can be translated into a more sensitive instrument that can see deeper into the universe.

The bigger the volume of the universe a detector can probe, the higher the number and wider the variety of gravitational wave sources it can see. We also work on understanding the variety of noise transients in the LIGO detectors so that their characteristics can be used to discern them from gravitational wave signals.

Selected references

  1. N Mukund, B O’Reilly, S Somala and S Mitra, “Effect of induced seismicity on advanced gravitational wave interferometers”, Class. Quantum Grav. 36 10LT01, (2019)
  2. N. Mukund, M. Coughlin, J. Harms et al., “Ground motion prediction at gravitational wave observatories using archival seismic data”, Class. Quantum Grav. 36 085005 (2019),
  3. N. Mukund, S. Thakur, S. Abraham, A. K. Aniyan, S. Mitra, N. S. Philip, K. Vaghmare, and D. P. Acharjya, “An Information Retrieval and Recommendation System for Astronomical Observatories”, ApJS 235 22 (2018)
  4. N. Mukund, S. Abraham, S. Kandhasamy, S. Mitra, and N. S. Philip, “Transient classification in LIGO data using difference boosting neural network”, Phys. Rev. D 95, 104059 (2017)
  5. M. Coughlin, N. Mukund, J. Harms, J. Driggers, R. Adhikari and S. Mitra, “Towards a first design of a Newtonian-noise cancellation system for Advanced LIGO”, Class. Quantum Grav. 33 244001 (2016)
  6. S. Bose et al., “Tackling excess noise from bilinear and nonlinear couplings in gravitational-wave interferometers,” accepted for publication (2016).
  7. T. Dal Canton et al., “Effect of sine-Gaussian glitches on searches for binary coalescence,” Class. Quantum Grav. 31 015016 (2014).